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Abstract

Our main contribution in this paper is to prove the existence of the mild
solutions for an impulsive fractional differential inclusions involving the Caputo
derivative in Banach spaces. The results are obtained by using fractional cal-
culation, operator semigroups and Leray Schauder’s fixed point theorem. An
example is given to illustrate the theory.
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1 Introduction

This paper is concerned with the existence of the mild solutions for an impulsive
fractional differential inclusions of the form:

cDq
tx(t) ∈ Ax(t) + F (t, x(t))

∆x(tk) = Ik(x(t−k )); k = 1, 2, ....,m

x(0) = x0; 0 < T <∞

(1.1)
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where A : D(A) ⊂ X → X is a closed, densely defined linear operator and infinitesi-
mal generator of a strongly continuous semigroup {S(t)}t≥0 on Banach space X.
cDq

t denotes the Caputo fractional derivative of order q, the state x(.) takes values in
Banach space X, F : J ×X → 2X\{φ} is a nonempty, bounded, closed and convex
multivalued map. Here, 0 = t0 < t1 < t2 < ....... < tm < tm+1 = T ; Ik ∈ C(X,X), k =
1, 2, .......,m are bounded functions, ∆x(tk) = x(t+k )−x(t−k ); x(t+k ) = limh→0 x(tk +h)
and x(t−k ) = limh→0 x(tk − h) represents the right and left limits of x(t) at t = tk
respectively.

Differential equations with fractional order have recently proved valuable tools in
the modeling of many physical phenomena ([17],[18],[33]). There has also been a sig-
nificant theoretical development in fractional differential equations in recent years; see
the monographs of Kilbas et al. ([1]), Miller and Ross([36]), Podlubny([19]), Samako
et al. ([46]), and the papers of Bai and Lu ([59]), Diethelm et al. ([33],[34],[35]), El-
Sayed ([8],[7],[6]), El-Sayed and Ibrahim ([9]), Kilbas and Trujillo ([3]), Podlubny et
al. ([20]), and Yu and Gao ([14]).

During the last ten years, impulsive ordinary differential inclusions and functional
differential inclusions with different conditions have been intensely studied by many
mathematicians. At present the foundations of the general theory are already laid, and
many of them are investigated in detail in the book of Aubin ([24]), Benchohra et al.
([43]), and in the papers of Henderson and Ouahab ([22]), Graef et al. ([30],[31],[29]),
and the references therein.

Differential equations with impulses were considered for the first time in the 1960’s
by Milman and Myshkis ([52],[51]). A period of active research, primarily in Eastern
Europe from 1960-1970, culminated with the monograph by Halanay and Wexler ([4]).

The dynamics of many evolving processes are subject to abrupt changes, such as
shocks, harvesting and natural disasters.These phenomena involve short-term pertur-
bations from continuous and smooth dynamics, whose duration is negligiblein compar-
ison with the duration of an entire evolution. In models involving such perturbations,
it is natural to assume that these perturbations act instantaneously or in the form of
“impulses”. As a consequence, impulsive differential equations have been developed
in modeling impulsive problems in physics, population dynamics, ecology, biotech-
nology, industrial robotics, pharmacokinetics, optimal control, and so forth. Again,
associated with this development, a theory of impulsive differential equations has
been given extensive attention. Works recognized as landmark contributions include
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([15],[57],[45],[11]). There are also many different studies in biology and medicine for
which impulsive differential equations are good models. In the periodic treatment of
some diseases, impulses correspond to administration of a drug treatment or a missing
product. In environmental sciences, impulses correspond to seasonal changes of the
water level of artificial reservoirs.

Very recently, some basic theory for initial-value problems for fractional differ-
ential equations and inclusions involving the Riemann-Liouville differential operator
was discussed by Benchohra et al. ([41]), Lakshmikantham ([53]), and Lakshmikan-
tham and Vastala ([54],[56],[55]). El-Sayed and Ibrahim ([9]) initiated the study of
fractional multivalued differential inclusions. Recently, fractional functional differen-
tial equations and inclusions with standard Riemann-Liouville and Caputo derivatives
with differences conditions were studied by Benchohra et al. ([39],[41],[42]), Hender-
son and Ouahab ([21]), and Ouahab ([12]). Bouzaroura and Mazouzi ([13]) has proved
the improved existence results for impulsive fractional differential equations.

In [13] authors have claimed that most of the published papers dealing with impul-
sive differential equation of fractional orders are not mathematically correct and they
have introduced a new class of impulsive fractional problems with several fractional
orders.

In this paper, our main contribution is to prove the existence and uniqueness of
mild solutions for an impulsive fractional differential inclusions involving the Caputo
derivative with Sectorial operator by the new concept introduced by [13].

2 Preliminaries

In this section, we shall introduce some basic definitions, notations and lemmas from
mutli-valued analysis which are used throughout this paper.
C(J,X) denotes the Banach space of all continuous functions from J into X with the
norm

‖x‖∞ := sup
{
‖x(t)‖ : t ∈ J

}
.

In order to define the solution of (1.1) we shall consider the space of functions

Ω = {x : J → X : there exist 0 = t0 < t1 < ... < tm < tm+1 = T such that tk =
τk(x(tk)), x(t+k ) exists, k = 0, 1, 2, ....,m and xk ∈ C((tk, tk+1], X), k = 0, 1, 2, ...,m},
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where xk is the restriction of x over (tk, tk+1], k = 0, ...,m.

L1(J,X) denotes the Banach space of measurable functions x : J → Xwhich are

Lebesgue integrable and normed by ‖x‖L1 =
T∫
0
|x(t)|dt for all x ∈ L1(J,X).

Let Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y bounded},
Pcp = {Y ∈ P(X) : Y compact} and Pcp,c(X) = {Y ∈ P(X) : Y compact and
convex}.

A multivalued map G : X → P (X) is convex (closed) valued if G(x) is con-
vex(closed) for all x ∈ X, G is bounded on bounded sets if G(B) =

⋃
x∈B G(x) is

bounded in X for all B ∈ Pb(X) (i.e., supx∈B{sup{‖x‖ : x ∈ G(x)}} <∞).

G is called upper semicontinuous (u.s.c.) on X, if for each x0 ∈ X, the set G(x0)
is a nonempty closed subset of X and if for each open set N of X containing G(x0),
there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N . G is said to be
completely continuous if G(B) is relatively compact for every B ∈ Pb(X). If the mul-
tivalued map G is completely continuous with nonempty compact values, then G is
u.s.c. if and only if G has a closed graph (i.e., xn → x∗, yn → y∗, yn ∈ G(xn)) imply
y∗ ∈ G(x∗). G has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed
point set of the multivalued operator G will be denoted by F in G. A multivalued
map G : [0, 1] → Pcl(X) is said to be measurable if for every y ∈ X, the function
t 7→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)} is measurable.

For more details on multivalued map see the books of Aubin and Frankowska
([23]), Deimling ([32])and Hu and Papageorgiou ([50]).

DEFINITION 2.1 A multivalued map F : J × X → P(X) is said to be L1-
Carathéodory if
(i) t 7→ F (t, u) is measurable for each u ∈ X;
(ii) u 7→ F (t, u) is upper semicontinuous for almost all t ∈ J ;
(iii) for each q > 0, there exists ϕ ∈ L1(J,X) such that
‖F (t, u)‖ = sup{|v| v ∈ F (t, u)} ≤ ϕ(t) for all |u| ≤ q and for a.e. t ∈ J .

For each x ∈ Ω, define the set of selections of F by

SF,x = {v ∈ L1(J,X) : v(t) ∈ F (t, x(t))a.e.t ∈ J} is nonempty.
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LEMMA 2.2 ([5]) Let F : J ×X → Pcp,c(X) be an L1-Carathéodory multivalued
map and let L be a linear continuous mapping from L1(J,X) to C(J,X), then the
operator

L ◦ SF : C(J,X)→ Pcp,c(C(J,X)), x 7→ (L ◦ SF )(x) := L(SF,x)

is a closed graph operator in C(J,X × C(J,X)).

LEMMA 2.3 ([49]) Let α > 0, then the differential equation
cDαh(t) = 0

has solutions h(t) = c0 + c1t+ c2t
2 + .....+ cn−1t

n−1, ci ∈ X, i = 0, 1, 2, ....., n− 1, n =
[α] + 1.

LEMMA 2.4 ([49]) Let α > 0, then
IαcDαh(t) = h(t) + c0 + c1t+ c2t

2 + .....+ cn−1t
n−1

for some ci ∈ X, i = 0, 1, 2, ...., n− 1, n = [α] + 1.

DEFINITION 2.5 ([2],[57]) The fractional (arbitrary) order integral of the func-
tion h ∈ L1([a, b], X) is defined by

Iαa h(t) =

α∫
a

(t− s)α−1

Γ(α)
h(s)ds,

where Γ is the gamma function.
When a = 0, we write Iαh(t) = [h× ϕα](t), where

ϕα(t) = tα−1

Γ(α)
for t > 0, and ϕα(t) = 0 for t ≤ 0.

ϕα(t)→ δ(t) as α→ 1, where δ is the delta function.

DEFINITION 2.6 ([2],[57]) For a function h given on the interval [a, b], the αth
Riemann-Liouville fractional-order derivative of h, is defined by

(Dα
a+h)(t) = 1

Γ(n−α)

(
d
dt

)n
t∫
a

(t− s)n−α−1h(s)ds

Here n = [α] + 1 and [α] denotes the integer part of α.

DEFINITION 2.7 ([2],[57]) For a function h given on the interval [a, b], the αth
Caputo fractional-order derivatives of h, is defined by

(cDα
a+h)(t) = 1

Γ(n−α)

(
d
dt

)n
t∫
a

(t− s)n−α−1h(n)(s)ds

Here n = [α] + 1 and [α] denotes the integer part of α.
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3 Existence of Solutions

Now, we define solution of problem (1.1)

DEFINITION 3.1 A function x ∈ Ω is said to be a mild solution of system (1.1)
if x(0) = x0 and there exists f ∈ L1(J,X) such that f(t) ∈ F (t, x(t)) on t ∈ J and

x(t) = x0 +
1

Γα0

t∫
0

(t− s)α0−1S(t− s)[Ax(s) + f(s)]ds; t ∈ [a, t1]

x(t) = x0 +
k∑
i=1

Ii(x(t−i )) +
1

Γαk

t∫
tk

(t− s)αk−1S(tk − s)[Ax(s) + v(s)]ds

+
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[Ax(s) + v(s)]ds; t ∈ Jk;

where k = 1, 2, ....,m; v ∈ SF,x.
Let us consider the following hypotheses which are assumed to prove theorem

(H1): The function F : J ×X → Pcp,c(X) be an L1-Carathéodory.

(H2): There exists a continuous non-decreasing function ϕ : [0,∞) → (0,∞) and a
function p ∈ C(J,X) such that

||F (t, x)|| ≤ p(t)ϕ(|x|) for each (t, x) ∈ J ×X

ρ0 = sup{p(t) : t ∈ J}, ||x||∞ = sup{|x(t)| : t ∈ J} ≤ q.

(H3): A : D(A) ⊂ X → X is a continuous bounded linear operator and there exists
a constant M1 > 0 such that ‖A‖ < M1.
(H4): f : J × X → 2X\{φ} is continuous and there exists N1 and M2 such that
||f || ≤ N1 and |S(ti − s)| ≤M2.

THEOREM 3.2 Assume that hypotheses (H1)−(H4) hold, then (1.1) has atleast
one solution, provided
(a) there exist constant l∗ such that∣∣∣∣∣

k∑
i=1

Ii(x(t−i ))

∣∣∣∣∣ ≤
k∑
i=1

l∗|x(t−i )| ≤
k∑
i=1

l∗q ≤ kl∗q
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(b) for any q > 0, there exists a positive constant r such that

|z(t)| ≤ |x0|+ kl∗q +

(
(M1q + ρ0ϕ(q))

Γαk

)
Tαk

+
k∑
i=1

(
(M1q + ρ0ϕ(q))

Γαi−1

)
Tαi−1

≤ r

(c) there exists a number M̄ > 0, such that

M̄

|x0|+ kl∗q +M2(M1q + ρ0ϕ(q))

(
Tα

Γαk
+

k∑
i=1

Tαi−1

Γαi−1

) > 1

Proof: Consider the operator N : C(J,X)→ P(C(J,X)) defined by

N(x) =

{
z ∈ C(J,X) : z(t) = x0 +

k∑
i=1

Ii(x(t−i )) +
1

Γαk

∫ t

tk

(t− s)αk−1S(tk − s)[Ax(s)

+ v(s)]ds+
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[Ax(s) + v(s)]ds

}
,

we shall show that N satisfies the assumptions of nonlinear alternative of Leray-
Schauder type.

Step 1: N(x) is convex for each x ∈ C(J,X) if zi ∈ N(x) then there exists Ai, vi; i =
1, 2 such that

z1(t) = x0 +
k∑
i=1

Ii(x(t−i )) +
1

Γαk

t∫
tk

(t− s)αk−1S(tk − s)[A1x(s) + v1(s)]ds

+
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[A1x(s) + v1(s)]ds

and

z2(t) = x0 +
k∑
i=1

Ii(x(t−i )) +
1

Γαk

t∫
tk

(t− s)αk−1S(tk − s)[A2x(s) + v2(s)]ds

+
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[A2x(s) + v2(s)]ds

7

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 
ISSN 2229-5518  

2021

IJSER © 2017 
http://www.ijser.org 

IJSER



Let 0 ≤ λ ≤ 1. Then for each t ∈ J
We have,

λz1(t) + (1− λ)z2(t)

=

{
x0 +

k∑
i=1

Ii(x(t−i )) + 1
Γαk

t∫
tk

(t− s)αk−1S(tk − s)[λA1x(s) + λv1(s)]ds

+
k∑
i=1

1
Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[λA1x(s) + λv1(s)]ds

}

+

{
x0 +

k∑
i=1

Ii(x(t−i )) + 1
Γαk

t∫
tk

(t− s)αk−1S(tk − s)[(1− λ)A2x(s) + (1− λ)v2(s)]ds

+
k∑
i=1

1
Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[(1− λ)A2x(s) + (1− λ)v2(s)]ds

}

Therefore,

λz1(t) + (1− λ)z2(t) = x0 +
k∑
i=1

Ii(x(t−i )) +
1

Γαk

t∫
tk

(t− s)αk−1S(tk − s)

[{λA1 + (1− λ)A2}x(s) + {λv1 + (1− λ)v2}(s)]ds

Since SF,x is convex(because F has convex value) then λz1 + (1− λ)z2 ∈ N(x).

Step 2: N maps bounded sets into bounded sets in C(J,X).
To show that for any q > 0, there exists a positive constant M such that

x ∈ Bq = {x ∈ C(J,X) : ‖x‖∞ ≤ q}
We have, ‖N(x)‖∞ ≤M then for each z ∈ N(x), there exists v ∈ SF,x such that

z(t) = x0 +
k∑
i=1

Ii(x(t−i )) +
1

Γαk

t∫
tk

(t− s)αk−1S(tk − s)[Ax(s) + v(s)]ds

+
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[Ax(s) + v(s)]ds

|z(t)| ≤ |x0|+
∣∣∣∣∣
k∑
i=1

Ii(x(t−i ))

∣∣∣∣∣+
∣∣∣∣∣ 1

Γαk

t∫
tk

(t− s)αk−1S(tk − s)[Ax(s) + v(s)]ds

∣∣∣∣∣
+

∣∣∣∣∣
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[Ax(s) + v(s)]ds

∣∣∣∣∣
8
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≤ |x0|+ kl∗q +
1

Γαk

t∫
tk

|(t− s)αk−1||S(tk − s)|[|Ax(s)|+ |v(s)|]ds

+
k∑
i=1

1

Γαi−1

ti∫
ti−1

|(ti − s)αi−1−1||S(ti − s)|[|Ax(s) + v(s)|]ds

≤ |x0|+ kl∗q +
M1q + ρ0ϕ(s)

Γαk

t∫
tk

|(t− s)αk−1||S(tk − s)|ds

+
k∑
i=1

M1q + ρ0ϕ(s)

Γαi−1

ti∫
ti−1

|(ti − s)αi−1−1||S(ti − s)|ds

≤ |x0|+ kl∗q +

(
M1q + ρ0ϕ(s)

Γαk

)
M2T

αk +
k∑
i=1

(
M1q + ρ0ϕ(s)

Γαi−1

)
M2T

αi−1

≤ r

Step 3: N maps bounded sets into equicontinuous sets of C(J,X).

z(t) = x0 +
k∑
i=1

Ii(x(t−i )) +
1

Γαk

t∫
tk

(t− s)αk−1S(tk − s)[Ax(s) + v(s)]ds

+
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[Ax(s) + v(s)]ds; for t1 < t2

|z(t2)− z(t1)|

≤ 1
Γαk

t1∫
tk

|(t2 − s)αk−1 − (t1 − s)αk−1||S(tk − s)||[Ax(s) + v(s)]|ds

+ 1
Γαk

t2∫
t1

|(t2 − s)αk−1||S(tk − s)||[Ax(s) + v(s)]|ds

≤
(
M1q+ρ0ϕ(q)

Γαk

)
M2

t1∫
tk

|(t2 − s)αk−1 − (t1 − s)αk−1|ds

+

(
M1q+ρ0ϕ(q)

Γαk

)
M2

t2∫
t1

|(t2 − s)αk−1 − (t1 − s)αk−1|ds

As t1 → t2 then |z(t2)− z(t1)| → 0.
By Steps 1 to 3 and from Arzela-Ascoli theorem, we can conclude that N : C(J,X)→
P(C(J,X)) is completely continuous.
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Step 4: N has a closed graph.
Let xn → x∗ and zn → z∗ then for zn ∈ N(xn), there exists vn ∈ SF,xn such that for
each t ∈ J
To prove:- z∗ ∈ N(x∗)

zn(t) = x0 +
k∑
i=1

Ii(xn(t−i )) +
1

Γαk

t∫
tk

(t− s)αk−1S(tk − s)[Axn(s) + vn(s)]ds

+
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[Axn(s) + vn(s)]ds

z∗(t) = x0 +
k∑
i=1

Ii(x∗(t
−
i )) +

1

Γαk

t∫
tk

(t− s)αk−1S(tk − s)[Ax∗(s) + v∗(s)]ds

+
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[Ax∗(s) + v∗(s)]ds

||zn(t)− z∗(t)|| =

∥∥∥∥∥ 1

Γαk

t∫
tk

(t− s)αk−1S(tk − s)[A(xn − x∗)(s) + (vn − v∗)(s)]ds

+
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[A(xn − x∗)(s) + (vn − v∗)(s)]ds

+
k∑
i=1

Ii(xn(t−i )− x∗(t−i ))

∥∥∥∥∥
≤ M2T

α

Γαk
‖[A(xn − x∗)(s) + (vn − v∗)(s)]‖

+
k∑
i=1

M2T
αi−1

Γαi−1

‖[A(xn − x∗)(s) + (vn − v∗)(s)]‖+ kl∗q

≤ M2T
α

Γαk
‖A‖‖(xn(s)− x∗(s))‖+ ‖(vn(s)− v∗(s))‖

+
k∑
i=1

M2T
αi−1

Γαi−1

‖A‖‖(xn(s)− x∗)(s)‖+ ‖(vn − v∗(s))‖+ kl∗q

||zn(t)− z∗(t)|| → 0 as n→∞, as xn → x∗ and vn → v∗.
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Consider, the continuous linear operator Γ : L1(J,X)→ C(J,X) defined by

v → (Γv)(t) =
∫ t

tk

(t− s)αk−1S(tk − s)[Ax(s) + v(s)]ds

+
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[Ax(s) + v(s)]ds

from lemma 2.2, Γ is a closed graph operator in C(J,X × C(J,X)).

Step 5: A priori bounds on solutions.
Let x ∈ C(J,X) be such that x ∈ λN(x) for some λ ∈ (0, 1) then there exists
v ∈ L1(J,X) with v ∈ SF,x such that for each t ∈ J

x(t) = λx0 +
k∑
i=1

Ii(λx(t−i )) +
1

Γαk

t∫
tk

(t− s)αk−1S(tk − s)[Aλx(s) + λv(s)]ds

+
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)[Aλx(s) + λv(s)]ds

|x(t)| ≤ |x0|+
k∑
i=1

|Ii(x(t−i ))|+ 1

Γαk

t∫
tk

(t− s)αk−1S(tk − s)|[Ax(s) + v(s)]|ds

+
k∑
i=1

1

Γαi−1

ti∫
ti−1

(ti − s)αi−1−1S(ti − s)|[Ax(s) + v(s)]|ds

≤ |x0|+ kl∗q +
M2T

αk

Γαk
|[Ax(s) + v(s)]|+

k∑
i=1

M2T
αi−1

Γαi−1

|[Ax(s) + v(s)]|

‖x‖∞ ≤ |x0|+ kl∗q +
M2T

αk

Γαk
(M1q + ρ0ϕ(q)) +

k∑
i=1

M2T
αi−1

Γαi−1

(M1q + ρ0ϕ(q))

‖x‖∞

|x0|+ kl∗q +M2(M1q + ρ0ϕ(q))

(
Tα

Γαk
+

k∑
i=1

Tαi−1

Γαi−1

) ≤ 1

Let U = {x ∈ PC(J,X) : ||x||∞ < M̄}
The operator F : Ū → PC(J,X) is continuous and completely continuous from the
choice of U , there is no x ∈ ∂U such that x = λF (x) for some λ ∈ (0, 1). As a
consequence of the nonlinear alternative of Leray-Schauder type. We denote that F
has a fixed point x in Ū which is a solution of the problem.
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4 Example:

Consider, the second fractional impulsive problem
cDq

tu(t) = |u(t)|
(1+et)(1+|u(t)|) , q ∈ (0, 1), t ∈ [0, T ]\{t},

u(0) = 0,

u(t+1 ) = u(t−1 ) + 1
2
.

Set

f1(t, u) = u
(1+et)(1+u)

, (t, u) ∈ [0, T ]× [0,∞).

Obviously, for all u ∈ [0,∞) and each t ∈ [0, T ],

|f1(t, u)| = 1
(1+et)

∣∣∣∣∣ u
1+u

∣∣∣∣∣ ≤ 1
4
|u|.

Thus, all the assumptions in theorem (3.2) are satisfied, our result can be applied
to the problem (1.1).
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